On the Ternary System Hafnium–Boron–Carbon

Peter Rogl¹ and Helmut Bittermann

Institut für Physikalische Chemie, Universität Wien, Währingerstrasse 42, A-1090 Wien, Austria

Received September 9, 1999; in revised form January 14, 2000; accepted January 20, 2000

Phase equilibria in the Hf–B–C system were calculated by thermodynamic modeling. The liquid phase was described as a substitutional solution using the Redlich–Kister formalism for the excess Gibbs energy and a reaction scheme was constructed for the entire ternary system. With respect to the increasing technological interest in dense ceramic parts $HfB_2-"B_4C"$ with various degrees of $^{10}B/^{11}B$ enrichment as nuclear reactor control or moderator substances, we focus in this paper on the phase relations pertinent to the fabrication of $HfB_2-"B_4C"$ ceramic material. © 2000 Academic Press

Key Words: ternary system Hf–B–C; thermodynamic calculation; phase relations; isopleths Hf–"B₄C" and HfB₂–"B₄C."

INTRODUCTION

The demand for dense ceramic parts of hafnium diboride and boroncarbide with various degrees of ¹⁰B/¹¹B enrichment as nuclear reactor control or moderator substances has recently triggered increasing interest in the detailed knowledge of proper phase relations and melting temperatures in the system Hf-B-C. Based on a recent critical assessment and thermodynamic calculation of the phase equilibria in the Hf-B-C system by the authors (1) in the temperature range of 1400°C up to the melting range employing the ThermoCalc program system, we provide a detailed analysis on the phase relations involved in the fabrication processes of HfB2-"B4C" ceramic material which usually follow two major routes: (a) high-temperature hot pressing of fine powder grades of HfB_2 and " B_4C " or (b) reaction sintering starting from powders of "B₄C" and elemental hafnium plus boron.

Although several compilations of the most relevant data on the topology of the Hf-B-C system were published (2-5), the thermodynamic calculation (1) is essentially based on the experimental investigation by Rudy (6) of the entire constitutional system (isothermal section at 1400°C, three isopleths HfB₂-C, HfB₂-HfC_{0.9}, HfB₂-B_{4.5}C, and liquidus projection) assisted by independent studies of the isopleths HfB_2-C (7), HfB_2-HfC_{1-x} (8), and $HfB_2-"B_4C"$ (9).

BINARY SYSTEMS

Critical assessments of experimental data and corresponding thermodynamic calculations are available for all three binary boundary systems: B–C (10), Hf–B (11), and Hf–C (12). A partial phase diagram Hf–C was calculated (13) employing the order parameter functional method and essentially concerns (hypothetical) ordered superlattice phases at low temperatures (below ~ 520°C), Hf₃C₂ and Hf₆C₅, deriving from NaCl-type HfC_{1-x}. Data of the binary phase diagram are summarized in Table 1.

EXPERIMENTAL DATA ON THE TERNARY SYSTEM Hf-B-C

Phase equilibria at temperatures below 1800° C are characterized by the absence of ternary compounds and rather small mutual solid solubilities of the binary boride and carbide phases (6–9, 14). However, for the (B, C)-deficient solution Hf(C, B)_{1-x} a maximum boron exchange of about 12 at% B was observed at a carbon deficiency of about 7 at% at 3140°C (6). The low B-solubility in HfC_{1-x} at 1400°C of about 2.5 at% B results in precipitation of HfB₂ on cooling which could not be suppressed at cooling rates lower than 100 K/s (6). Similar to boron containing TiC_{1-x} this effect may serve as a precipitation hardening of the hafnium monocarbide solution.

The phase relations obtained from the isothermal sections at 1400°C (6) and 1500°C (14) in combination with the experimental isopleths derived for HfB_2-C (6, 7), $HfB_2-HfC_{0.9}$ (6, 8) and $HfB_2-"B_4C"$ (6, 9), all revealing eutectic pseudobinary behavior, as a consequence result in compatibility of $HfB_2 + "B_4C"$ but incompatibility of the join $Hf + "B_4C$." Agreement exists on the experimental findings for the $HfB_2-"B_4C"$ pseudobinary section between (6) (68 ± 4 mol% $B_{4.5}C$, originally given as 78 mol% $B_{0.817}C_{0.183}$ at 2330 ± 25°C) and the reinvestigation (9) (78 mol% "B_4C" at 2380 ± 30°C). These results have consequences for the fabrication of ceramic parts

¹To whom correspondence should be addressed. E-mail: peter.franz. rogl@univie.ac.at.

 $HfB_2 + "B_4C"$, where densification of powder mixtures $HfB_2 + "B_4C"$ in the hot press may be achieved only at rather high subeutectic temperatures approaching 2300°C or via additions in form of densification aids operating at lower temperatures.

Microhardness measurements on samples in the isopleth HfB_2 -" B_4C " near the eutectic composition were found to reveal values well below the linear combination of the binary compounds and to be strongly dependent on the eutectic crystallization conditions. Microhardness for the HfB_2 -" B_4C " eutectic was reported to be 32 to 33 GPa (9).

THERMODYNAMIC CALCULATION OF THE TERNARY PHASE DIAGRAM

Details of the thermodynamic calculation of the ternary Hf–B–C system employing the ThermoCalc computer program (15) and the sublattice concept (16) were presented earlier (1). Here we shall only give the essential informations on the sublattices used in the modeling: liquid–(B, C, Hf)₁, β B–(B)₉₃(B, C)₁₂, graphite–(B, C)₁, β Hf–(Hf)₁(B, C, Va)₃, α Hf–(Hf)₁(B, C, Va)_{0.5}, "B₄C"–(B₁₂, B₁₁C)₁(B₂, C₂B, B₂C, C)₁, HfC_{1-x}–(Hf)₁(B, C, Va)₁, HfB–(Hf)₁(B)₁ and HfB₂–(Hf)₁(B)₂. Referring to the Stable Element Reference (SER), the Gibbs energies of all phases are described relative to the enthalpies of the pure elements in their states stable at 298.15 K and 0.101325 MPa taken from (17).

FIG. 1. Hf-B-C calculated liquids projection at 100 K intervals with experimental data from (6) (\triangle maximum in liquid trough, \Box four-phase equilibrium); the symbols e_1 , E_1 , etc., and their corresponding temperature and concentration refer to Table 2.

FIG. 2. Calculated isopleth from Hf to $B_{0.817}C_{0.183}$.

The assessed thermodynamic parameters of the Hf-B-C system are deposited with the *Journal of Solid State Chemistry* and may be obtained from the authors on request. The calculated liquidus surface is shown in Fig. 1, vertical sections in Figs. 2 to 4.

As seen from a comparison in Table 2, the calculation is in good agreement with the experimental observation. A

FIG. 3. Calculated isopleth " HfB_2 -C" with experimental data from (6, 7).

FIG. 4. Calculated isopleths "HfB₂-B₄C": (a) section HfB₂-B_{0.92}C_{0.08}, (b) section HfB₂-B_{0.86}C_{0.14}, (c) section HfB₂-B_{0.82}C_{0.18}, (d) section HfB₂-B_{0.80}C_{0.20}.

complete reaction scheme for the ternary Hf-B-C system is given in Fig. 5.

PHASE EQUILIBRIA INVOLVING "B4C"

Table 2 compares the experimental compositions of the phases at the four-phase isothermal reactions (6) with the thermodynamic calculation. In the very boron-rich region the thermodynamic calculation favors a transition-type reaction at 2091°C, $L + "B_4C" \Leftrightarrow \beta B + HfB_2$, rather than a ternary eutectic at 1950°C, $L \Leftrightarrow \beta B + "B_4C" + HfB_2$, as

reported by Rudy (6). This discrepancy essentially results from the latest assessment of the B–C system (10), revealing a peritectic reaction L + "B₄C" $\Leftrightarrow \beta$ B at 2103°C rather than a eutectic L $\Leftrightarrow \beta$ B + "B₄C" at 2080°C as believed earlier (6). The experimentally reported (6) sudden drop of more than 100°C and within less than 2 at% from the binary reaction isotherms into the ternary eutectic (at 1950°C) therefore seems unlikely and as a consequence cannot be obtained from thermodynamic modeling.

With the absence of a homogeneous binary range for HfB_2 as well as of any significant solubility of Hf in " B_4C "

ROGL AND BITTERMANN

Reaction	Compo	osition of respective p	Temperature, K (°C)	Reaction type	
B-C system from [96Kas]		at% C			
$L \Leftrightarrow "B_4C"$	18.3	18.3	_	2725(2452)	Congruent
$L \Leftrightarrow "B_4C" + C$	29.3	19.5	97.7	2663(2390)	Eutectic
$L + "B_4C" \Leftrightarrow \beta B$	0.57	9.86	1.43	2376(2103)	Peritectic
$L \Leftrightarrow \beta B$	0	0	—	2348(2075)	Melting
Hf-B system from [97Bit1]		at% B			
$L \Leftrightarrow HfB_2$	66.7	66.7	_	3650(3377)	Congruent
$L \Leftrightarrow \beta Hf$	0	0	—	2506(2233)	Melting
$L + HfB_2 \Leftrightarrow HfB$	22	66.7	50	2377(2104)	Peritectic
$L \Leftrightarrow \beta B$	100	100	_	2348(2075)	Melting
$L \Leftrightarrow HfB_2 + \beta B$	99	66.7	100	2338(2065)	Eutectic
$L \Leftrightarrow \beta Hf + HfB$	15	1.1	50	2154(1881)	Eutectic
β Hf + HfB $\Leftrightarrow \alpha$ Hf	0.7	50	1.5	2064(1791)	Peritectoid
β Hf $\Leftrightarrow \alpha$ Hf	0	0	—	2016(1743)	Allotropic
Hf-C system from [97Bit2]		at% C			
$L \Leftrightarrow HfC_{1-r}$	48.4	48.4	_	4215(3942)	Congruent
$L \Leftrightarrow HfC_{1-x} + C$	68	49.9	100	3446(3173)	Eutectic
$L + HfC_{1-x} \Leftrightarrow \alpha Hf$	6.02	33.5	14	2649(2376)	Peritectic
$L \Leftrightarrow \beta H f$	0	0	—	2506(2233)	Melting
$L \Leftrightarrow \beta Hf + \alpha Hf$	1.37	0.5	2.93	2480(2207)	Eutectic
$\beta Hf \Leftrightarrow \alpha Hf$	0	0	—	2016(1743)	Allotropic

 TABLE 1

 Calculated Data for the Binary Phase Diagrams B–C, Hf–B, and Hf–C

FIG. 5. Calculated reaction scheme for the Hf-B-C system.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Phase	Experimental data			Calculated data					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Composition (at%)			Composition (at%)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reaction		Hf	В	С	Temperature, K (°C)	Hf	В	С	Temperature, K (°C)	Reaction type
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$L \rightleftharpoons HfB_2 + HfC_{1-x}$	L	40	44	16	3413(3140)	40.78	42.94	16.28	3384 (3111)	e ₂ (max)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfB_2	\sim 34	>64	<2	. ,	33.33	66.67	0.00	. ,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		HfC_{1-x}	~ 55	~12	~33		50.48	12.00	37.52		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons HfB_2 + C$	L	21	42	37	2788(2515)	20.18	40.75	39.07	2787.3 (2514.2)	e ₃ (max)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfB_2	>33	>64	< 3		33.33	66.67	0.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		С	<1	~ 2	>97		0.00	0.95	99.05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons HfB_2 + HfC_{1-x} + C$	L	24	38	38	2753(2480)	20.95	39.31	39.74	2786.7 (2513.6)	E_1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 4	HfB_2	~ 33	>64	< 3		33.33	66.67	0.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HfC_{1-x}	~ 51	~ 5	~ 44		50.05	4.35	45.60		
$\begin{split} L &\Rightarrow HfB_2 + "B_4C" & L & \sim 7 & \sim 78 & \sim 15 & 2603(2330) & 4.20 & 80.00 & 15.80 & 2677 (2404) & e_4(max) \\ & HfB_2 & \sim 33 & >65 & <2 & 3.33 & 66.67 & 0.00 \\ & "B_4C" & <1 & \sim 81 & >18 & 0.00 & 81.94 & 18.06 \\ & L &\Rightarrow HfB_2 + "B_4C" + C & L & \sim 9 & \sim 66 & \sim 25 & 2533(2260) & 6.64 & 64.88 & 28.48 & 2591 (2318) & E_2 \\ & HfB_2 & \sim 33 & >64 & <3 & 33.33 & 66.67 & 0.00 \\ & "B_4C" & <1 & \sim 80 & >19 & 0.00 & 80.43 & 19.57 \\ & C & <1 & \sim 2 & >97 & 0.00 & 2.09 & 97.91 \\ L + "B_4C" \Rightarrow HfB_2 + \beta B & L & - & - & - & -1.11 & 98.39 & 0.50 & 2364 (2091) & U_1 \\ & "B_4C" & - & - & - & - & 0.00 & 90.15 & 9.85 \\ & HfB_2 & - & - & - & - & 0.00 & 98.58 & 1.42 \\ L &\Rightarrow HfB_2 + "B_4C" + \beta B & L & \sim 2 & \sim 96 & \sim 2 & 2223(1950) & - & - & - & - \\ & HfB_2 & \sim 33 & >66 & <1 & - & - & - \\ & B_6 & - & - & - & 0.00 & 98.58 & 1.42 \\ L &\Rightarrow HfB_2 + "B_4C" + \beta B & L & \sim 22 & \sim 96 & \sim 2 & 2223(1950) & - & - & - \\ & HfB_2 & \sim 33 & >66 & <1 & - & - & - \\ & B_6 & <1 & \sim 98 & <1 & - & - & - \\ & B_6 & <1 & \sim 98 & <1 & - & - & - \\ & B_6 & <1 & \sim 98 & <1 & - & - & - \\ & B_6 & <1 & \sim 98 & <1 & - & - & - \\ & B_6 & <1 & \sim 98 & <1 & - & - & - \\ & HfB_2 & \sim 34 & >64 & <2 & 33.33 & 66.67 & 0.00 \\ & HfB & \sim 50 & >49 & <1 & 50.00 & 50.00 & 0.00 \\ & HfB & \sim 50 & >49 & <1 & 50.00 & 50.00 & 0.00 \\ & HfB & \sim 51 & >48 & <1 & 50.00 & 50.00 & 0.00 \\ & HfB & \sim 51 & >48 & <1 & 50.00 & 50.00 & 0.00 \\ & AHf & \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ L &\Rightarrow \alpha Hf + \beta Hf + HfB & L & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) & 85.01 & 14.92 & 0.07 & 2153 (1880) & E_3 \\ AHf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ & \beta Hf & \sim 97.5 & \sim 1.5 & <1 & 99.00 & 0.06 & 0.00 \\ & HfB & \sim 50 & 49 & <1 & 50.00 & 50.00 & 0.00 \\ & AHf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ & \beta Hf & \sim 97.5 & \sim 1.5 & <1 & 99.00 & 0.96 & 0.04 \\ & HfB & \sim 50 & 49 & <1 & 50.00 & 50.00 & 0.00 \\ & AHf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ & \beta Hf & \sim 97.5 & \sim 1.5 & <1 & 90.00 & 50.00 & 0.00 \\ & \beta Hf & >97.5 & \sim 1.5 & <1 & 90.00 & 50.00 & 0.00 \\ & \beta Hf & >97.5 & \sim 1.5 & <1 & 50.00 & 50.00 & 0.00 \\ & \beta Hf & >97.5 & <$		С	<1	~ 2	>97		0.00	0.90	99.10		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons HfB_2 + "B_4C"$	L	~ 7	~ 78	~15	2603(2330)	4.20	80.00	15.80	2677 (2404)	e ₄ (max)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfB_2	~ 33	>65	<2		33.33	66.67	0.00		
$\begin{split} L &\rightleftharpoons HfB_2 + "B_4C" + C & L & \sim 9 & \sim 66 & \sim 25 & 2533(2260) & 6.64 & 64.88 & 28.48 & 2591 (2318) & E_2 \\ HfB_2 & \sim 33 & > 64 & <3 & 33.33 & 66.67 & 0.00 \\ & "B_4C" & <1 & \sim 80 & > 19 & 0.00 & 80.43 & 19.57 \\ C & <1 & \sim 2 & > 97 & 0.00 & 2.09 & 97.91 \\ L + "B_4C" &\rightleftharpoons HfB_2 + \beta B & L & - & - & - & - & 1.11 & 98.39 & 0.50 & 2364 (2091) & U_1 \\ & "B_4C" & - & - & - & - & 0.00 & 90.15 & 9.85 \\ HfB_2 & - & - & - & - & 0.00 & 98.58 & 1.42 \\ L &\rightleftharpoons HfB_2 + "B_4C" + \beta B & L & \sim 2 & \sim 96 & \sim 2 & 2223(1950) & - & - & - & - \\ & HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - \\ HfB_2 & \sim 34 & > 64 & <2 & 33.33 & 66.67 & 0.00 \\ HfB & \sim 50 & > 49 & <1 & 50.00 & 50.00 & 0.00 \\ HfB & \sim 50 & > 49 & <1 & 50.00 & 50.00 & 0.00 \\ HfC_{1-x} & \sim 60 & \sim 9 & \sim 31 & 61.22 & 7.75 & 31.03 \\ L + HfC_{1-x} &\rightleftharpoons HfB + xHf & L & \sim 84 & \sim 14 & \sim 2 & 2213(1940) & 82.05 & 15.62 & 2.33 & 2227 (1954) & U_3 \\ HfB & \sim 51 & > 48 & <1 & 50.00 & 50.00 & 0.00 \\ xHf & \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ HfB & \sim 51 & > 48 & <1 & 50.00 & 50.00 & 0.00 \\ xHf & \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ L &\rightleftharpoons xHf + \beta Hf + HfB & L & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) & 85.01 & 14.92 & 0.07 & 2153 (1880) & E_3 \\ xHf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ \beta Hf & \sim 97.5 & \sim 1.5 & <1 & 99.00 & 0.96 & 0.04 \\ HfB & \sim 50 & 49 & <1 & 50.00 & 50.00 & 0.00 \\ \end{array}$		"B ₄ C"	<1	~81	>18		0.00	81.94	18.06		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons HfB_2 + "B_4C" + C$	L	~9	~66	~25	2533(2260)	6.64	64.88	28.48	2591 (2318)	E ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .	HfB_2	~ 33	>64	< 3		33.33	66.67	0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		"B ₄ C"	<1	~ 80	>19		0.00	80.43	19.57		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		С	<1	~ 2	>97		0.00	2.09	97.91		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L + "B_4C" \rightleftharpoons HfB_2 + \beta B$	L			_	_	1.11	98.39	0.50	2364 (2091)	U_1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		"B ₄ C"		_			0.00	90.15	9.85		
$\begin{split} L \rightleftharpoons HfB_2 + "B_4C" + \beta B & - & - & - & 0.00 & 98.58 & 1.42 \\ L & \sim 2 & \sim 96 & \sim 2 & 2223(1950) & - & - & - & - & - \\ HfB_2 & \sim 33 & > 66 & <1 & - & - & - & - \\ "B_4C" & <1 & \sim 89 & > 10 & - & - & - & - \\ \beta B & <1 & \sim 98 & <1 & - & - & - \\ \beta B & <1 & \sim 98 & <1 & - & - & - \\ HfB_2 & \sim 34 & > 64 & <2 & 33.33 & 66.67 & 0.00 \\ HfB_2 & \sim 34 & > 64 & <2 & 33.33 & 66.67 & 0.00 \\ HfB_2 & \sim 50 & > 49 & <1 & 50.00 & 50.00 & 0.00 \\ HfC_{1-x} & \sim 60 & \sim 9 & \sim 31 & 61.22 & 7.75 & 31.03 \\ L + HfC_{1-x} \rightleftharpoons HfB + \alpha Hf & L & \sim 84 & \sim 14 & \sim 2 & 2213(1940) & 82.05 & 15.62 & 2.33 & 2227 (1954) & U_3 \\ HfC_{1-x} & \sim 62 & \sim 6 & \sim 32 & 62.75 & 6.50 & 30.75 \\ HfB & \sim 51 & > 48 & <1 & 50.00 & 50.00 & 0.00 \\ \alpha Hf & \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ L \rightleftharpoons \alpha Hf + \beta Hf + HfB & L & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) & 85.01 & 14.92 & 0.07 & 2153 (1880) & E_3 \\ \alpha Hf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ \beta Hf & > 97.5 & \sim 1.5 & <1 & 99.00 & 0.96 & 0.04 \\ HfB & \sim 50 & 49 & <1 & 50.00 & 50.00 & 0.00 \\ \end{matrix}$		HfB_2	_	_	_		33.33	66.67	0.00		
$\begin{split} L \rightleftharpoons HfB_2 + "B_4C" + \beta B & L & \sim 2 & \sim 96 & \sim 2 & 2223(1950) & - & - & - & - & - \\ & HfB_2 & \sim 33 & > 66 & <1 & - & - & - & - \\ & "B_4C" & <1 & \sim 89 & > 10 & - & - & - & - \\ & & \beta B & <1 & \sim 98 & <1 & - & - & - \\ & & & - & - & - & - \\ L + HfB_2 \rightleftharpoons HfB + HfC_{1-x}L & \sim 79 & \sim 18 & \sim 3 & 2323(2050) & 78.60 & 18.86 & 2.54 & 2336 (2063) & U_2 \\ & HfB_2 & \sim 34 & > 64 & <2 & 33.33 & 66.67 & 0.00 \\ & HfB_2 & \sim 50 & > 49 & <1 & 50.00 & 50.00 & 0.00 \\ & HfB_1 & \sim 50 & > 49 & <1 & 61.22 & 7.75 & 31.03 \\ L + HfC_{1-x} \rightleftharpoons HfB + \alpha Hf & L & \sim 84 & \sim 14 & \sim 2 & 2213(1940) & 82.05 & 15.62 & 2.33 & 2227 (1954) & U_3 \\ & HfC_{1-x} & \sim 62 & \sim 6 & \sim 32 & 62.75 & 6.50 & 30.75 \\ & HfB_1 & \sim 51 & > 48 & <1 & 50.00 & 50.00 & 0.00 \\ & \alpha Hf & \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ L \rightleftharpoons \alpha Hf + \beta Hf + HfB & L & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) & 85.01 & 14.92 & 0.07 & 2153 (1880) & E_3 \\ & \alpha Hf_1 & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ & \beta Hf & > 97.5 & \sim 1.5 & <1 & 99.00 & 0.96 & 0.04 \\ & HfB_1 & \sim 50 & 49 & <1 & 50.00 & 50.00 & 0.00 \\ \end{array}$		$\beta \mathbf{B}$			_		0.00	98.58	1.42		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons HfB_2 + "B_4C" + \beta B$	Ĺ	~ 2	~96	~ 2	2223(1950)			_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HfB_2	~ 33	>66	<1			_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		"B ₄ C"	<1	~89	>10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\beta \mathbf{B}$	<1	~98	<1				_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$L + HfB_2 \rightleftharpoons HfB + HfC_{1-1}$	_x L	~79	~18	~ 3	2323(2050)	78.60	18.86	2.54	2336 (2063)	U_2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfB_2	~ 34	>64	<2		33.33	66.67	0.00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HfB	~ 50	>49	<1		50.00	50.00	0.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HfC_{1-x}	~ 60	~9	~31		61.22	7.75	31.03		
$L \rightleftharpoons \alpha Hf + \beta Hf + HfB = \begin{cases} HfC_{1-x} & \sim 62 & \sim 6 & \sim 32 \\ HfB & \sim 51 & > 48 & <1 \\ \alpha Hf & \sim 90 & \sim 1 & \sim 9 \\ L & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) \\ \alpha Hf & \sim 96 & \sim 1 & \sim 3 \\ \beta Hf & > 97.5 & \sim 1.5 & <1 \\ HfB & \sim 50 & 49 & <1 \\ \end{array} \begin{pmatrix} 62.75 & 6.50 & 30.75 \\ 50.00 & 0.00 \\ 85.01 & 14.92 \\ 97.74 & 1.30 & 1.96 \\ 99.00 & 0.96 & 0.04 \\ 0.00 \\$	$L + HfC_{1-x} \rightleftharpoons HfB + \alpha Hf$	L	~ 84	~ 14	~ 2	2213(1940)	82.05	15.62	2.33	2227 (1954)	U_3
$L \rightleftharpoons \alpha Hf + \beta Hf + Hf B = \begin{cases} 4.51 > 4.8 < 1 & 50.00 & 50.00 & 0.00 \\ \alpha Hf \sim 90 & \sim 1 & \sim 9 & 92.27 & 0.45 & 7.28 \\ 1 & \sim 87.5 & \sim 11 & \sim 1.5 & 2123(1850) & 85.01 & 14.92 & 0.07 & 2153 (1880) & E_3 \\ \alpha Hf & \sim 96 & \sim 1 & \sim 3 & 97.74 & 1.30 & 1.96 \\ \beta Hf & > 97.5 & \sim 1.5 & < 1 & 99.00 & 0.96 & 0.04 \\ Hf B & \sim 50 & 49 & < 1 & 50.00 & 50.00 & 0.00 \end{cases}$		HfC_{1-x}	~62	~6	~ 32		62.75	6.50	30.75		
$L \rightleftharpoons \alpha Hf + \beta Hf + HfB \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$		HfB	~ 51	>48	<1		50.00	50.00	0.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		αHf	~90	~ 1	~9		92.27	0.45	7.28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$L \rightleftharpoons \alpha Hf + \beta Hf + HfB$	L	~87.5	~11	~1.5	2123(1850)	85.01	14.92	0.07	2153 (1880)	E ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	αHf	~96	~ 1	~ 3	4 P	97.74	1.30	1.96		-
HfB ~ 50 49 <1 50.00 50.00 0.00		βHf	>97.5	~1.5	<1		99.00	0.96	0.04		
		HfB	~ 50	49	<1		50.00	50.00	0.00		

 TABLE 2

 Isothermal Reactions in the Hf–B–C System: Comparison of Experimental Data from (6) with Calculated Data

and of "B₄C" in HfB₂, the maximum eutectic melting in the pseudobinary system HfB₂ + "B₄C" (experimentally observed at 2330°C, calculated at 2404°C, 2677 K) occurs on the tie line connecting HfB₂ with "B₄C" (at B₈₂C₁₈) via the maximum pseudoeutectic point. Samples with compositions deviating from this tie-line, either slightly richer in boron or poorer in boron, will in any case reveal a decrease in melting temperature toward the four-phase reaction isotherms: $L + "B_4C" \Leftrightarrow \beta B + HfB_2$, at 2091°C (2364 K, for boronrich grades) or $L \Leftrightarrow "B_4C" + HfB_2 + C$, at 2318°C (2591 K, for boron-poor grades). This feature of the phase diagram is seen from the isothermal section at 2350°C (2623 K; Fig. 6 and Table 2) and may explain the scatter in the experimental melting temperatures of samples with nominal compositions between HfB_2 and the range of concentrations for "B₄C" [6, 9]. The significantly lower melting temperatures of all those alloys deviating in composition from the maximum pseudoeutectic join $HfB_2-B_{82}C_{18}$ may provoke the use of additions of boron or carbon as systemintrinsic densification aids for short-term liquid phase sinter reactions in order to obtain dense ceramic parts "B₄C" + HfB_2 either in pressureless or pressure-assisted sinter techniques.

The alternative route to obtain dense ceramic parts " B_4C " + HfB₂ may start from the elemental powder blends or from proper powder blends Hf + B + B₄C.

FIG. 6. Hf-B-C calculated isothermal section at 2623 K (2350°C).

According to the liquidus surface in Fig. 1 and the isopleth Hf + "B₄C" in Fig. 2, reactions in the latter case will run through low laying binary and ternary reaction isotherms involving densifying liquids: $L \Leftrightarrow Hf$ + HfB at 1881°C, $L \Leftrightarrow \beta B$ + HfB₂, at 2065°C, $L + "B_4C" \Leftrightarrow \beta B$ at 2103°C, $L + HfB_2 \Leftrightarrow HfB$ at 2104°C, and $L + "B_4C" \Leftrightarrow (\beta B) + HfB_2$, at 2091°C. Thus for complete reaction via diffusion, a final reaction temperature close to 2100°C may still be essential.

REFERENCES

- P. Rogl, in "Phase Diagrams of Ternary M-B-C Systems" (G. Effenberg, Ed.) ASM-MSIT, 1998.
- G. S. Upadkhaya, Bor: Poluch., Strukt. Svoistva, Mater. 2, 115–123 (1974).
- M. C. Schouler, M. Ducarroir, and C. Bernard, Rev. Int. Hautes Temper. Refract. Fr. 20, 261–311 (1983). [in French]
- H. Holleck, "Materialkundlich-Technische Reihe," Vol. 6, pp. 264–270. Gebrüder Bornträger, Berlin. [in German]
- P. Villars, A. Prince, and H. Okamoto, "Handbook of Ternary Alloys Phase Diagrams," Vol. 5. ASM International, Materials Park, OH, USA 1995.
- E. Rudy and S. Windisch, "Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems," Part II, Vol. XIII, Report AFML-TR-65-2, II, Vol XIII. Air Force Materials Laboratory, Wright Patterson Air Force Base, OH, 1966.
- Y. V. Levinskii and S. E. Salibekov, Russ. J. Inorg. Chem. 10(3), 319-320 (1965). [translated from Zh. Neorg. Khim. 10(3), 588-591 (1965)]
- S. S. Ordan'yan, V. I. Unrod, and A. E. Lutsenko, *Inorg. Mater.* 13(3), 451–453 (1977). [translated from *Izv. Akad. Nauk. SSSR*, *Neorg. Mater.* 13(3), 546–547 (1977)]
- S. S. Ordan'yan and I. A. Dmitriev, *Poroshk. Metall. (Kiev)* 5, 99–101 (1989).
- 10. B. Kasper, Thesis Max-Plank Institute-PML, Stuttgart, 1996.
- 11. H. Bittermann and P. Rogl, J. Phase Equil. 18(1), 24-47 (1997).
- 12. H. Bittermann and P. Rogl, J. Phase Equil. 18(4), 344-356 (1997).
- A. I. Gusev, Sov. Phys. Solid State 32(9), 1595–1599 (1991); see also A. I. Gusev, in "Physical Chemistry of Nonstoichiometric Refractory Compounds," Chapter 3. Nauka, Moscow, 1991. [in Russian]
- 14. H. Nowotny, E. Rudy, and F. Benesovsky, *Monatsh. Chem.* 92, 393–402 (1961). [in German]
- 15. B. Sundman, B. Jansson, and J.-O. Andersson, *Calphad* 9, 153–190 (1985).
- 16. B. Sundman, An. Fisica B 86, 69-82 (1990).
- 17. A. T. Dinsdale, Calphad 15, 319-427 (1991).